Formula for the Legendre polynomials
In mathematics , Rodrigues' formula (formerly called the Ivory–Jacobi formula ) generates the Legendre polynomials . It was independently introduced by Olinde Rodrigues (1816 ), Sir James Ivory (1824 ) and Carl Gustav Jacobi (1827 ). The name "Rodrigues formula" was introduced by Heine in 1878, after Hermite pointed out in 1865 that Rodrigues was the first to discover it. The term is also used to describe similar formulas for other orthogonal polynomials . Askey (2005) describes the history of the Rodrigues formula in detail.
Let
(
P
n
(
x
)
)
n
=
0
∞
{\displaystyle (P_{n}(x))_{n=0}^{\infty }}
be a sequence of orthogonal polynomials on the interval
[
a
,
b
]
{\displaystyle [a,b]}
with respect to weight function
w
(
x
)
{\displaystyle w(x)}
. That is, they have degrees
d
e
g
(
P
n
)
=
n
{\displaystyle deg(P_{n})=n}
, satisfy the orthogonality condition
∫
a
b
P
m
(
x
)
P
n
(
x
)
w
(
x
)
d
x
=
K
n
δ
m
,
n
{\displaystyle \int _{a}^{b}P_{m}(x)P_{n}(x)w(x)\,dx=K_{n}\delta _{m,n}}
where
K
n
{\displaystyle K_{n}}
are nonzero constants depending on
n
{\displaystyle n}
, and
δ
m
,
n
{\displaystyle \delta _{m,n}}
is the Kronecker delta . The interval
[
a
,
b
]
{\displaystyle [a,b]}
may be infinite in one or both ends.
Rodrigues' type formula — If
w
(
x
)
=
W
(
x
)
/
B
(
x
)
,
W
′
(
x
)
W
(
x
)
=
A
(
x
)
B
(
x
)
,
{\displaystyle w(x)=W(x)/B(x),\quad {\frac {W'(x)}{W(x)}}={\frac {A(x)}{B(x)}},}
where
A
(
x
)
{\displaystyle A(x)}
is a polynomial with degree at most 1 and
B
(
x
)
{\displaystyle B(x)}
is a polynomial with degree at most 2, and
lim
x
→
a
x
k
W
(
x
)
=
0
,
lim
x
→
b
x
k
W
(
x
)
=
0.
{\displaystyle \lim _{x\to a}x^{k}W(x)=0,\qquad \lim _{x\to b}x^{k}W(x)=0.}
for any
k
=
0
,
1
,
2
,
…
{\displaystyle k=0,1,2,\dots }
.
Then, if
d
n
d
x
n
[
B
(
x
)
n
w
(
x
)
]
≠
0
{\displaystyle {\frac {d^{n}}{dx^{n}}}\!\left[B(x)^{n}w(x)\right]\neq 0}
for all
n
=
0
,
1
,
2
,
…
{\displaystyle n=0,1,2,\dots }
, then
P
n
(
x
)
=
c
n
w
(
x
)
d
n
d
x
n
[
B
(
x
)
n
w
(
x
)
]
,
{\displaystyle P_{n}(x)={\frac {c_{n}}{w(x)}}{\frac {d^{n}}{dx^{n}}}\!\left[B(x)^{n}w(x)\right],}
for some constants
c
n
{\displaystyle c_{n}}
.
Proof
Let
F
k
:=
1
w
D
x
k
(
B
n
w
)
{\textstyle F_{k}:={\frac {1}{w}}D_{x}^{k}(B^{n}w)}
, then
F
k
=
B
n
−
k
p
k
{\textstyle F_{k}=B^{n-k}p_{k}}
for all
k
∈
0
:
n
{\textstyle k\in 0:n}
for some polynomials
p
k
{\textstyle p_{k}}
, such that
d
e
g
(
p
k
)
≤
k
{\textstyle deg(p_{k})\leq k}
. Proven by induction on
k
{\textstyle k}
:
F
k
+
1
=
B
n
−
k
−
1
(
B
p
k
′
+
(
n
−
k
)
B
′
p
k
+
(
A
−
B
′
)
p
k
)
{\displaystyle F_{k+1}=B^{n-k-1}(Bp_{k}'+(n-k)B'p_{k}+(A-B')p_{k})}
Let
Q
n
:=
1
w
D
x
n
(
B
n
w
)
{\textstyle Q_{n}:={\frac {1}{w}}D_{x}^{n}(B^{n}w)}
. We have shown that
Q
n
{\textstyle Q_{n}}
is a polynomial of degree
≤
n
{\displaystyle \leq n}
. With integration by parts, we have for all
n
>
m
{\textstyle n>m}
,
∫
a
b
Q
m
Q
n
w
d
x
=
∫
a
b
B
n
w
(
D
x
n
Q
m
)
d
x
=
0
{\displaystyle \int _{a}^{b}Q_{m}Q_{n}wdx=\int _{a}^{b}B^{n}w(D_{x}^{n}Q_{m})dx=0}
since
D
x
n
Q
m
=
0
{\textstyle D_{x}^{n}Q_{m}=0}
. Thus,
Q
0
,
Q
1
,
…
{\textstyle Q_{0},Q_{1},\dots }
make up an orthogonal polynomial series with respect to
w
{\textstyle w}
. Thus,
P
n
=
c
n
Q
n
{\textstyle P_{n}=c_{n}Q_{n}}
for some constants
c
n
{\textstyle c_{n}}
.
Differential equation —
B
(
x
)
d
2
d
x
2
P
n
(
x
)
+
A
(
x
)
d
d
x
P
n
(
x
)
+
λ
n
P
n
(
x
)
=
0
{\displaystyle B(x){\frac {d^{2}}{dx^{2}}}P_{n}(x)+A(x){\frac {d}{dx}}P_{n}(x)+\lambda _{n}P_{n}(x)=0}
λ
n
=
−
1
2
n
(
n
−
1
)
B
″
−
n
A
′
{\displaystyle \lambda _{n}=-{\frac {1}{2}}n(n-1)B''-nA'}
Proof
When
n
=
0
{\displaystyle n=0}
, it is trivial. When
n
=
1
{\displaystyle n=1}
, it simplifies to
A
P
1
′
=
A
′
P
1
{\displaystyle AP_{1}'=A'P_{1}}
, which is true since
P
1
=
c
1
w
(
B
w
)
′
=
c
1
A
{\displaystyle P_{1}={\frac {c_{1}}{w}}(Bw)'=c_{1}A}
. So assume
n
≥
2
{\displaystyle n\geq 2}
. Define
I
n
(
x
)
=
d
n
d
x
n
(
B
n
(
x
)
w
(
x
)
)
{\displaystyle I_{n}(x)={\frac {d^{n}}{dx^{n}}}(B^{n}(x)w(x))}
, then by direct computation and simplification, the equation to be proven is equivalent to
d
2
d
x
2
(
B
(
x
)
I
n
(
x
)
)
−
d
d
x
(
A
(
x
)
I
n
(
x
)
)
+
λ
n
I
n
(
x
)
=
0
{\displaystyle {\frac {d^{2}}{dx^{2}}}(B(x)I_{n}(x))-{\frac {d}{dx}}(A(x)I_{n}(x))+\lambda _{n}I_{n}(x)=0}
By Leibniz differentiation rule, we have
B
(
x
)
d
n
d
x
n
y
=
d
n
d
x
n
(
B
(
x
)
y
)
−
n
d
n
−
1
d
x
n
−
1
(
B
′
(
x
)
y
)
+
n
(
n
−
1
)
2
d
n
−
2
d
x
n
−
2
(
B
″
y
)
{\displaystyle B(x){\frac {d^{n}}{dx^{n}}}y={\frac {d^{n}}{dx^{n}}}(B(x)y)-n{\frac {d^{n-1}}{dx^{n-1}}}(B'(x)y)+{\frac {n(n-1)}{2}}{\frac {d^{n-2}}{dx^{n-2}}}(B''y)}
A
(
x
)
d
n
d
x
n
y
=
d
n
d
x
n
(
A
(
x
)
y
)
−
n
d
n
−
1
d
x
n
−
1
(
A
′
y
)
{\displaystyle A(x){\frac {d^{n}}{dx^{n}}}y={\frac {d^{n}}{dx^{n}}}(A(x)y)-n{\frac {d^{n-1}}{dx^{n-1}}}(A'y)}
for arbitrary
y
{\displaystyle y}
. This allows us to move
A
(
x
)
,
B
(
x
)
{\displaystyle A(x),B(x)}
to the other side of the
n
{\displaystyle n}
-th derivative. Set
y
=
B
n
(
x
)
w
(
x
)
{\displaystyle y=B^{n}(x)w(x)}
, and define
J
(
x
)
=
d
2
d
x
2
(
B
(
x
)
y
(
x
)
)
−
n
d
d
x
(
B
′
(
x
)
y
(
x
)
)
+
n
(
n
−
1
)
2
B
″
y
(
x
)
{\displaystyle J(x)={\frac {d^{2}}{dx^{2}}}(B(x)y(x))-n{\frac {d}{dx}}(B'(x)y(x))+{\frac {n(n-1)}{2}}B''y(x)}
K
(
x
)
=
−
d
d
x
(
A
(
x
)
y
(
x
)
)
+
n
A
′
y
(
x
)
{\displaystyle K(x)=-{\frac {d}{dx}}(A(x)y(x))+nA'y(x)}
L
(
x
)
=
λ
n
y
(
x
)
{\displaystyle L(x)=\lambda _{n}y(x)}
Then the equation simplifies to
d
n
d
x
n
(
J
+
K
+
L
)
=
0
{\displaystyle {\frac {d^{n}}{dx^{n}}}(J+K+L)=0}
J
(
x
)
{\displaystyle J(x)}
has three terms, call them in order
J
1
(
x
)
,
J
2
(
x
)
,
J
3
(
x
)
{\displaystyle J_{1}(x),J_{2}(x),J_{3}(x)}
.
K
(
x
)
{\displaystyle K(x)}
has two terms, call them in order
K
1
(
x
)
,
K
2
(
x
)
{\displaystyle K_{1}(x),K_{2}(x)}
.
J
3
(
x
)
+
K
2
(
x
)
+
L
(
x
)
=
(
λ
n
+
n
(
n
−
1
)
2
B
″
+
n
A
′
)
y
=
0
{\displaystyle J_{3}(x)+K_{2}(x)+L(x)=(\lambda _{n}+{\frac {n(n-1)}{2}}B''+nA')y=0}
.
That
J
1
(
x
)
+
J
2
(
x
)
+
K
1
(
x
)
=
0
{\displaystyle J_{1}(x)+J_{2}(x)+K_{1}(x)=0}
. follows from first writing
J
1
(
x
)
{\displaystyle J_{1}(x)}
as
J
1
(
x
)
=
d
2
d
x
2
(
B
n
(
x
)
∫
e
x
p
(
A
(
x
)
B
(
x
)
d
x
)
{\displaystyle J_{1}(x)={\frac {d^{2}}{dx^{2}}}(B^{n}(x)\int exp({\frac {A(x)}{B(x)}}dx)}
and then taking the innermost first derivative to obtain
J
1
(
x
)
=
d
d
x
(
n
B
′
(
x
)
B
n
−
1
(
x
)
∫
e
x
p
(
A
(
x
)
B
(
x
)
)
d
x
+
A
(
x
)
B
n
−
1
(
x
)
∫
e
x
p
(
A
(
x
)
B
(
x
)
)
d
x
)
{\displaystyle J_{1}(x)={\frac {d}{dx}}(nB'(x)B^{n-1}(x)\int exp({\frac {A(x)}{B(x)}})dx+A(x)B^{n-1}(x)\int exp({\frac {A(x)}{B(x)}})dx)}
and then rewriting this as
J
1
(
x
)
=
d
d
x
(
n
B
′
(
x
)
B
n
(
x
)
w
(
x
)
+
A
(
x
)
B
n
(
x
)
w
(
x
)
)
{\displaystyle J_{1}(x)={\frac {d}{dx}}(nB'(x)B^{n}(x)w(x)+A(x)B^{n}(x)w(x))}
The first term is the negative of
J
2
(
x
)
{\displaystyle J_{2}(x)}
and the second term is the negative of
K
1
(
x
)
{\displaystyle K_{1}(x)}
.
More abstractly, this can be viewed through Sturm–Liouville theory . Define an operator
L
f
:=
−
1
w
(
W
f
′
)
′
{\displaystyle Lf:=-{\frac {1}{w}}(Wf')'}
, then the differential equation is equivalent to
L
P
n
=
λ
n
P
n
{\displaystyle LP_{n}=\lambda _{n}P_{n}}
. Define the functional space
X
=
L
2
(
[
a
,
b
]
,
w
(
x
)
d
x
)
{\displaystyle X=L^{2}([a,b],w(x)dx)}
as the Hilbert space of functions over
[
a
,
b
]
{\displaystyle [a,b]}
, such that
⟨
f
,
g
⟩
:=
∫
a
b
f
g
w
{\displaystyle \langle f,g\rangle :=\int _{a}^{b}fgw}
. Then the operator
L
{\displaystyle L}
is self-adjoint on functions satisfying certain boundary conditions, allowing us to apply the spectral theorem .
Generating function [ edit ]
A simple argument using Cauchy's integral formula shows that the orthogonal polynomials obtained from the Rodrigues formula have a generating function of the form
G
(
x
,
u
)
=
∑
n
=
0
∞
u
n
P
n
(
x
)
G(x,u)=\sum _{n=0}^{\infty }u^{n}P_{n}(x)
The
P
n
(
x
)
{\displaystyle P_{n}(x)}
functions here may not have the standard normalizations. But we can write this equivalently as
G
(
x
,
u
)
=
∑
n
=
0
∞
u
n
N
n
N
n
P
n
(
x
)
G(x,u)=\sum _{n=0}^{\infty }{\frac {u^{n}}{N_{n}}}N_{n}P_{n}(x)
where the
N
n
{\displaystyle N_{n}}
are chosen according to the application so as to give the desired normalizations.
By Cauchy's integral formula , Rodrigues’ formula is equivalent to
P
n
(
x
)
=
n
!
2
π
i
c
n
w
(
x
)
∮
C
B
n
(
t
)
w
(
t
)
(
t
−
x
)
n
+
1
d
t
{\displaystyle P_{n}(x)={\frac {n!}{2\pi i}}{\frac {c_{n}}{w(x)}}\oint _{C}{\frac {B^{n}(t)w(t)}{(t-x)^{n+1}}}\,dt}
where the integral is along a counterclockwise closed loop around
x
{\displaystyle x}
. Let
u
=
t
−
x
B
(
t
)
u={\frac {t-x}{B(t)}}
Then the complex path integral takes the form
P
n
(
x
)
=
n
!
2
π
i
c
n
∮
C
G
(
x
,
u
)
u
n
+
1
d
u
P_{n}(x)={\frac {n!}{2\pi i}}c_{n}\oint _{C}{\frac {G(x,u)}{u^{n+1}}}\,du
G
(
x
,
u
)
=
w
(
t
)
d
t
d
u
w
(
x
)
B
(
t
)
G(x,u)={\frac {w(t){\frac {dt}{du}}}{w(x)B(t)}}
where now the closed path C encircles the origin. In the equation for
G
(
x
,
u
)
{\displaystyle G(x,u)}
,
t
{\displaystyle t}
is an implicit function of
u
{\displaystyle u}
. By expressing t in terms of u, explicit formulas for
G
(
x
,
u
)
{\displaystyle G(x,u)}
may be found. Expanding
G
(
x
,
u
)
{\displaystyle G(x,u)}
in the power series given earlier gives
1
2
π
i
∮
C
G
(
x
,
u
)
u
n
+
1
d
u
=
1
2
π
i
∮
C
∑
m
=
0
∞
u
m
P
m
(
x
)
u
n
+
1
d
u
=
P
n
(
x
)
{\displaystyle {\frac {1}{2\pi i}}\oint _{C}{\frac {G(x,u)}{u^{n+1}}}\,du={\frac {1}{2\pi i}}\oint _{C}{\frac {\sum _{m=0}^{\infty }u^{m}P_{m}(x)}{u^{n+1}}}\,du=P_{n}(x)}
Only the
m
=
n
{\displaystyle m=n}
term has a nonzero residue, which is
P
n
(
x
)
{\displaystyle P_{n}(x)}
. The
n
!
c
n
{\displaystyle n!c_{n}}
coefficient was dropped since normalizations are conventions which can be inserted afterwards as discussed earlier.
Family
[
a
,
b
]
{\displaystyle [a,b]}
w
{\displaystyle w}
W
{\displaystyle W}
A
{\displaystyle A}
B
{\displaystyle B}
c
n
{\displaystyle c_{n}}
Legendre
P
n
{\displaystyle P_{n}}
[
−
1
,
+
1
]
{\displaystyle [-1,+1]}
1
{\displaystyle 1}
1
−
x
2
{\displaystyle 1-x^{2}}
−
2
x
{\displaystyle -2x}
1
−
x
2
{\displaystyle 1-x^{2}}
(
−
1
)
n
2
n
n
!
{\displaystyle {\frac {(-1)^{n}}{2^{n}n!}}}
Chebyshev (of the first kind)
T
n
{\displaystyle T_{n}}
[
−
1
,
+
1
]
{\displaystyle [-1,+1]}
1
/
1
−
x
2
{\displaystyle 1/{\sqrt {1-x^{2}}}}
1
−
x
2
{\displaystyle {\sqrt {1-x^{2}}}}
−
x
{\displaystyle -x}
1
−
x
2
{\displaystyle 1-x^{2}}
Chebyshev (of the second kind)
U
n
{\displaystyle U_{n}}
[
−
1
,
+
1
]
{\displaystyle [-1,+1]}
1
−
x
2
{\displaystyle {\sqrt {1-x^{2}}}}
(
1
−
x
2
)
3
/
2
{\displaystyle (1-x^{2})^{3/2}}
−
3
x
{\displaystyle -3x}
1
−
x
2
{\displaystyle 1-x^{2}}
Jacobi
P
n
(
α
,
β
)
{\displaystyle P_{n}^{(\alpha ,\beta )}}
[
−
1
,
+
1
]
{\displaystyle [-1,+1]}
(
1
−
x
)
α
(
1
+
x
)
β
{\displaystyle (1-x)^{\alpha }(1+x)^{\beta }}
(
1
−
x
)
α
+
1
(
1
+
x
)
β
+
1
{\displaystyle (1-x)^{\alpha +1}(1+x)^{\beta +1}}
(
β
−
α
)
−
(
α
+
β
+
2
)
x
{\displaystyle (\beta -\alpha )-(\alpha +\beta +2)x}
1
−
x
2
{\displaystyle 1-x^{2}}
(
−
1
)
n
2
n
n
!
{\displaystyle {\frac {(-1)^{n}}{2^{n}n!}}}
associated Laguerre
L
n
(
α
)
{\displaystyle L_{n}^{(\alpha )}}
[
0
,
∞
)
{\displaystyle [0,\infty )}
x
α
e
−
x
{\displaystyle x^{\alpha }e^{-x}}
x
α
+
1
e
−
x
{\displaystyle x^{\alpha +1}e^{-x}}
α
+
1
−
x
{\displaystyle \alpha +1-x}
x
{\displaystyle x}
1
n
!
{\displaystyle {\frac {1}{n!}}}
physicist's Hermite
H
n
{\displaystyle H_{n}}
(
−
∞
,
+
∞
)
{\displaystyle (-\infty ,+\infty )}
e
−
x
2
{\displaystyle e^{-x^{2}}}
e
−
x
2
{\displaystyle e^{-x^{2}}}
−
2
x
{\displaystyle -2x}
1
{\displaystyle 1}
(
−
1
)
n
{\displaystyle (-1)^{n}}
Similar formulae hold for many other sequences of orthogonal functions arising from Sturm–Liouville equations , and these are also called the Rodrigues formula (or Rodrigues' type formula), especially when the resulting sequence is polynomial.
Rodrigues stated his formula for Legendre polynomials
P
n
{\displaystyle P_{n}}
:
P
n
(
x
)
=
1
2
n
n
!
d
n
d
x
n
[
(
x
2
−
1
)
n
]
.
{\displaystyle P_{n}(x)={\frac {1}{2^{n}n!}}{\frac {d^{n}}{dx^{n}}}\!\left[(x^{2}-1)^{n}\right]\!.}
(
1
−
x
2
)
P
n
″
(
x
)
−
2
x
P
n
′
(
x
)
+
n
(
n
+
1
)
P
n
(
x
)
=
0
{\displaystyle (1-x^{2})P_{n}''(x)-2xP_{n}'(x)+n(n+1)P_{n}(x)=0}
For Legendre polynomials, the generating function is defined as
G
(
x
,
u
)
=
∑
n
=
0
∞
u
n
P
n
(
x
)
G(x,u)=\sum _{n=0}^{\infty }u^{n}P_{n}(x)
.
The contour integral gives the Schläfli integral for Legendre polynomials:
P
n
(
x
)
=
1
2
π
i
2
n
∮
C
(
t
2
−
1
)
n
(
t
−
x
)
n
+
1
d
t
{\displaystyle P_{n}(x)={\frac {1}{2\pi i2^{n}}}\oint _{C}{\frac {(t^{2}-1)^{n}}{(t-x)^{n+1}}}dt}
Summing up the integrand,
G
(
x
,
u
)
=
1
1
−
2
u
x
+
u
2
1
2
π
i
∮
C
(
1
t
−
t
−
−
1
t
−
t
+
)
d
t
{\displaystyle G(x,u)={\frac {1}{\sqrt {1-2ux+u^{2}}}}{\frac {1}{2\pi i}}\oint _{C}\left({\frac {1}{t-t_{-}}}-{\frac {1}{t-t_{+}}}\right)dt}
where
t
±
=
1
u
(
1
±
1
−
2
u
x
+
u
2
)
{\displaystyle t_{\pm }={\frac {1}{u}}(1\pm {\sqrt {1-2ux+u^{2}}})}
. For small
u
{\displaystyle u}
, we have
t
−
≈
x
,
t
+
→
∞
{\displaystyle t_{-}\approx x,t_{+}\to \infty }
, which heuristically suggests that the integral should be the residue around
t
−
{\displaystyle t_{-}}
, thus giving
G
(
x
,
u
)
=
1
1
−
2
u
x
+
u
2
{\displaystyle G(x,u)={\frac {1}{\sqrt {1-2ux+u^{2}}}}}
Physicist's Hermite polynomials :
H
n
(
x
)
=
(
−
1
)
n
e
x
2
d
n
d
x
n
[
e
−
x
2
]
=
(
2
x
−
d
d
x
)
n
⋅
1.
{\displaystyle H_{n}(x)=(-1)^{n}e^{x^{2}}{\frac {d^{n}}{dx^{n}}}\!\left[e^{-x^{2}}\right]=\left(2x-{\frac {d}{dx}}\right)^{n}\cdot 1.}
H
n
″
−
2
x
H
n
′
+
2
n
H
n
=
0
{\displaystyle H_{n}''-2xH_{n}'+2nH_{n}=0}
The generating function is defined as
G
(
x
,
u
)
=
∑
n
=
0
∞
H
n
(
x
)
n
!
u
n
.
{\displaystyle G(x,u)=\sum _{n=0}^{\infty }{\frac {H_{n}(x)}{n!}}\,u^{n}.}
The contour integral gives
H
n
(
x
)
=
(
−
1
)
n
e
x
2
n
!
2
π
i
∮
C
e
−
t
2
(
t
−
x
)
n
+
1
d
t
.
{\displaystyle H_{n}(x)=(-1)^{n}e^{x^{2}}{\frac {n!}{2\pi i}}\oint _{C}{\frac {e^{-t^{2}}}{(t-x)^{n+1}}}\,dt.}
G
(
x
,
u
)
=
∑
n
=
0
∞
(
−
1
)
n
e
x
2
n
!
n
!
2
π
i
u
n
∮
C
e
−
t
2
(
t
−
x
)
n
+
1
d
t
=
e
x
2
1
2
π
i
∮
C
e
−
t
2
(
∑
n
=
0
∞
(
−
1
)
n
u
n
(
t
−
x
)
n
+
1
)
d
t
=
e
x
2
1
2
π
i
∮
C
e
−
t
2
1
t
−
x
+
u
=
e
x
2
e
−
(
x
−
u
)
2
=
e
2
x
u
−
u
2
{\displaystyle {\begin{aligned}G(x,u)&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}e^{x^{2}}}{n!}}{\frac {n!}{2\pi i}}\,u^{n}\oint _{C}{\frac {e^{-t^{2}}}{(t-x)^{n+1}}}\,dt\\&=e^{x^{2}}{\frac {1}{2\pi i}}\oint _{C}e^{-t^{2}}\left(\sum _{n=0}^{\infty }{\frac {(-1)^{n}u^{n}}{(t-x)^{n+1}}}\right)dt\\&=e^{x^{2}}{\frac {1}{2\pi i}}\oint _{C}e^{-t^{2}}{\frac {1}{t-x+u}}\\&=e^{x^{2}}\,e^{-(x-u)^{2}}\\&=e^{2xu-u^{2}}\end{aligned}}}
For associated Laguerre polynomials ,
L
n
(
α
)
(
x
)
=
x
−
α
e
x
n
!
d
n
d
x
n
(
e
−
x
x
n
+
α
)
=
x
−
α
n
!
(
d
d
x
−
1
)
n
x
n
+
α
.
{\displaystyle L_{n}^{(\alpha )}(x)={x^{-\alpha }e^{x} \over n!}{d^{n} \over dx^{n}}\left(e^{-x}x^{n+\alpha }\right)={\frac {x^{-\alpha }}{n!}}\left({\frac {d}{dx}}-1\right)^{n}x^{n+\alpha }.}
x
L
n
(
α
)
(
x
)
″
+
(
α
+
1
−
x
)
L
n
(
α
)
(
x
)
′
+
n
L
n
(
α
)
(
x
)
=
0
.
{\displaystyle xL_{n}^{(\alpha )}(x)''+(\alpha +1-x)L_{n}^{(\alpha )}(x)'+nL_{n}^{(\alpha )}(x)=0~.}
The generating function is defined as
G
(
x
,
u
)
:=
∑
n
=
0
∞
u
n
L
n
(
α
)
(
x
)
{\displaystyle G(x,u):=\sum _{n=0}^{\infty }u^{n}L_{n}^{(\alpha )}(x)}
By the same method, we have
G
(
x
,
u
)
=
1
(
1
−
u
)
α
+
1
e
−
u
x
1
−
u
{\displaystyle G(x,u)={\frac {1}{(1-u)^{\alpha +1}}}e^{-{\frac {ux}{1-u}}}}
.
P
n
(
α
,
β
)
(
x
)
=
(
−
1
)
n
2
n
n
!
(
1
−
x
)
−
α
(
1
+
x
)
−
β
d
n
d
x
n
{
(
1
−
x
)
α
(
1
+
x
)
β
(
1
−
x
2
)
n
}
.
{\displaystyle P_{n}^{(\alpha ,\beta )}(x)={\frac {(-1)^{n}}{2^{n}n!}}(1-x)^{-\alpha }(1+x)^{-\beta }{\frac {d^{n}}{dx^{n}}}\left\{(1-x)^{\alpha }(1+x)^{\beta }\left(1-x^{2}\right)^{n}\right\}.}
(
1
−
x
2
)
P
n
(
α
,
β
)
″
+
(
β
−
α
−
(
α
+
β
+
2
)
x
)
P
n
(
α
,
β
)
′
+
n
(
n
+
α
+
β
+
1
)
P
n
(
α
,
β
)
=
0.
{\displaystyle \left(1-x^{2}\right)P_{n}^{(\alpha ,\beta )}{}''+(\beta -\alpha -(\alpha +\beta +2)x)P_{n}^{(\alpha ,\beta )}{}'+n(n+\alpha +\beta +1)P_{n}^{(\alpha ,\beta )}=0.}
∑
n
=
0
∞
P
n
(
α
,
β
)
(
x
)
u
n
=
2
α
+
β
R
−
1
(
1
−
u
+
R
)
−
α
(
1
+
u
+
R
)
−
β
,
{\displaystyle \sum _{n=0}^{\infty }P_{n}^{(\alpha ,\beta )}(x)u^{n}=2^{\alpha +\beta }R^{-1}(1-u+R)^{-\alpha }(1+u+R)^{-\beta },}
where
R
=
1
−
2
u
x
+
u
2
{\textstyle R={\sqrt {1-2ux+u^{2}}}}
, and the branch of square root is chosen so that
R
(
x
,
0
)
=
1
{\displaystyle R(x,0)=1}
.
Askey, Richard (2005), "The 1839 paper on permutations: its relation to the Rodrigues formula and further developments" , in Altmann, Simón L.; Ortiz, Eduardo L. (eds.), Mathematics and social utopias in France: Olinde Rodrigues and his times , History of mathematics, vol. 28, Providence, R.I.: American Mathematical Society , pp. 105– 118, ISBN 978-0-8218-3860-0
Ivory, James (1824), "On the Figure Requisite to Maintain the Equilibrium of a Homogeneous Fluid Mass That Revolves Upon an Axis", Philosophical Transactions of the Royal Society of London , 114 , The Royal Society: 85– 150, doi :10.1098/rstl.1824.0008 , JSTOR 107707
Jacobi, C. G. J. (1827), "Ueber eine besondere Gattung algebraischer Functionen, die aus der Entwicklung der Function (1 − 2xz + z 2 )1/2 entstehen." , Journal für die Reine und Angewandte Mathematik (in German), 2 : 223– 226, doi :10.1515/crll.1827.2.223 , ISSN 0075-4102 , S2CID 120291793
O'Connor, John J.; Robertson, Edmund F. , "Olinde Rodrigues" , MacTutor History of Mathematics Archive , University of St Andrews
Rodrigues, Olinde (1816), "De l'attraction des sphéroïdes" , Correspondence sur l'École Impériale Polytechnique , (Thesis for the Faculty of Science of the University of Paris), 3 (3): 361– 385